CREU 2011 Final Report
Toward an Effective Data Model and User Session Dependency
Model

Anna Pobletts, Camille Cobb, Lucy Simko
poblettsal2@mail.wlu.edu, cobbc12 @mail.wlu.edu, simkoll1@mail.wlu.edu

5/1/11

1 Introduction

Web applications are becoming increasingly com-
mon, and people are becoming more and more de-
pendent on these applications to accomplish tasks
such as managing money and buying goods. It
it therefore imperative that web applications work
properly and consistently, which means they must be
thoroughly tested; however, testing web applications
is difficult and expensive.

One approach to making the testing of web appli-
cations cheaper and easier is to automate the testing
process. Although this approach is promising, cur-
rent automated testing methods are not efficient or
accurate enough. Another approach is user session
based testing. Figure 1 shows how user session based
testing records actual user accesses to older versions
of the application and parses them into user sessions,
which are then used as test cases. User session based
testing is inexpensive and creates test cases that are
representative of actual users.

We based our approach on work by Sant et al. [3],
who have done work in user-representative auto-
mated test case generation. They proposed generat-
ing test cases using a model of user sessions that re-
quires less space than the original user sessions. The

URLs

e.g., http://www.udel.edu
Web

Application
Server

Use as
Record Test Cases

Requests
User
Sessions

Figure 1: User Session Based Testing.

Client
Browser

requests

code .

responses

model has two parts: a control model, which we call
the navigation model, that represents a user’s naviga-
tion through a web application as a sequence of URL
requests and a data model that represents the user’s
parameter values associated with these requests.

Our research focuses on maintaining the benefits
of user session based testing while improving on the
current limitations of an inadequate data model and
a test suite that does not account for dependencies.
Our goals are to create test cases that are 1) effec-
tive in terms of failure detection and code coverage
2)representative of users and 3) cost effective to gen-
erate. Our research group proposed modularizing
control models and data models and explored con-
trol models in depth in previous work [4].

In section 3, we address the problem of determin-
ing the best data model for a parameter, which will

Intra-
Session
Navigation
Model

Intra-
Session
Navigation
Analyzer

Abstract
Test-Case
Generator

Abstract

Test Case
Data Test-Case Test
Model Generator Suite

Figure 2: Test Case Generation Process.

User
Sessions
User
Session
Parameter
Analyzer

not necessarily be the same for all parameters. In
previous work, we have identified a number of fac-
tors that influence the data model. They are used in
conjunction with the parameters to generate the data
model. We focus on improving the data model by
customizing the factors used for a specific parame-
ter.

In section 4, we examine the generated test suites
and how their order can affect the effectiveness of
the test cases. Since dependencies between sessions
can affect the validity of future session, we attempt
to automatically estimate user session dependencies
to arrange the test suite.

We present the motivation for examining these is-
sues, our approach to solving them, and preliminary
observations that suggests that these are promising
areas of research and our approach is worth pursu-
ing. The main contributions of this paper are:

e a sampling of factors that may affect how pa-
rameters appear in web applications.

e an approach to automatically identify and esti-
mate test case dependencies in web applications

2 Background: Test Case Genera-

tion Process

Figure 2 shows an overview of the test-case gener-
ation process. The test-case generation process be-

gins with logs of user interactions with a web ap-
plication, then builds navigation and data models,
which generate test cases for the web application.
Broadly defined, a web application is a set of web
pages and components that form a system in which
user input (navigation and data input) affect the sys-
tem’s state. Users interact with a web application us-
ing a browser, making requests over a network using
HTTP. When a user’s browser transmits an HTTP re-
quest to a web application, the application produces
an appropriate response, typically an HTML docu-
ment that the browser displays. The response can be
either static, in which case the content is the same
for all users, or dynamic such that its content may
depend on user input or application state.

Before the test-case generation process shown in
Figure 2 begins, the user accesses are parsed and seg-
mented to create users sessions. Each user session is
a sequence of user requests in the from of base re-
quests and name-value pairs. We say a user session
begins when a request from a new Internet Proto-
col(IP) address arrives at the server and ends when
the user leaves the web site or the session times out.
We consider a 45 minute gap between two requests
from a user to be equivalent to a session timing out.

From a set of user sessions and a navigation
model specification, the intra-session navigation an-
alyzer constructs an intra-session navigation model.
The abstract test-case generator uses the navigation
model and template criteria to produce a set of test-
case templates.

Meanwhile, the user sessions are also analyzed by
the user session analyzer to create an intra-session
data model. From here, the test case templates and
the data model are used by the test case generator to
output a set of test case—the test suite. The generator
makes these test cases by assigning the values for
parameters within each template. These values are
determined by the data models.

In previous work, a navigation model was created

that looked at a URL’s resources with ordered param-
eter names [4]. This was determined to be a useful
model because it provided more coverage informa-
tion than only the URL’s resources by itself. The
other main contributions of previous work were that
after analyzing the test case templates (made from
the navigation model), they proposed a practical way
to use test case templates. This allow a tester to
a) more easily tune parameters to make sure the re-
sulting test suite can meet the URL-based guaran-
tees with lower costs b) reduce the size of template
suites(which reduce redundancy) c) apply multiple
data models to a set of high URL+name coverage
test case templates.

3 Exploring Potential Data Models

3.1 Rationale

Our current approach of user session based test-
ing involve automatically generating test suites in
two steps: First, the tester generates a representa-
tion of the users’ paths through the application as a
sequence of abstract URLs containing the resource
name and parameter names, and then she adds pa-
rameter values into the sequence using a data model.
Previous work has found that there is a large set of
factors that influence the parameter values generated
by the data model. These factors include the param-
eter name, the current and previous resources, and
other current and previous parameter names.

We have observed that not every factor in our set
of potential factors has influence on every parameter
value. Our insight is to categorize parameters and
find correlation between the types of parameters and
the factors that positively affect them. Our goal in
doing this is to educe the number of factors we need
to consider when picking a parameter value in or-
der to produce the most effective and condensed data
model.

Test Case
Generator

F.’°’“. Abstract
Navigation
Model Test Case

Best Factor
Determiner (from
param features)

3 Executable

Data Model

Data Model
Specification >

(factors)

User Session
Parameter
Analyzer

|
|
Conditional |
Probabilities |

|

Figure 3: Framework for analyzing effects of factors.

3.2 Approach

Our approach is to add pre-processing step, which is
the Best Factor Determiner in Figure 3. To deter-
mine the most relevant factors for any given parame-
ter, we first assume every factor is relevent for every
parameter. By analyzing the logged user sessions,
we gather statistics on the use of the each parameter
name-value combination with every individual fac-
tor. For each parameter value-factor pair, we deter-
mine whether the difference between the probabiliy
of the value occuring given the current parameter and
the factor and the probabilty of the value occuring
given just the current parameter name is significantly
high; our threshold was a 1% difference. If the differ-
ence is significant, we consider the factor important.
Otherwise, we may discard the factor.

In a second step, we attempt to classify the factors
used for parameter values with certain qualities. We
classify based on features, which are characteristics
of parameter values inherent to their use in and by the
application and the user. There are three main types
of qualities that features describe: (1) dependency

relationships, (2) content value, and (3) source, des-
tination, or intended/possible use of the value. A list
of features and possible values (in brackets) appears
below:

e Source of value [user, database, navigation]
e Written to database [yes, no]

e Verified [not checked, checked
database, checked against rule]

against

e Required [yes, no]

e Relation to user [independent, entered now, en-
tered previously]

e Value type [string, number]

e HTML type [text area, file, selection box, hard-
coded by applicaton, hidden, etc.]

e Number of unique values [number of values that
only occur once]

e Average length of value [average number of
characters in value]

e Number of distinct values [Number of different
values]

e Depends on history [not all previous requests,
user history]

e Depends on other parameters in the current re-
quest [yes, no]

For a given factor and a feature, we determine
whether the factor is significant for most (> 50%)
of an application’s parameters with that feature. For
example, in Figure 3, we look at the effect of the fac-
tor resource name on parameters whose values come
from the user, parameters whose values come from
the application, and parameters whose values come

from the database. Note that when a parameter only
occurs with one factor (i.e., one resource), we dis-
card the parameter from our statistics, as the param-
eter must always occur with that resource. Currently,
parameters must be manually categorized, which is a
limitation and an avenue of future work. However,
when automatic parameter classification according
to our feature set is possible, the scalability of our
solution will allow an effective data model to be gen-
erated very quickly.

3.3 Preliminary Results

In a preliminary analysis of the factor resource name
and the feature source, we found that not all param-
eters required the factor. (See Figure 4 for our find-
ings.) We performed our analysis over five web ap-
plications: bookstore [2], CPM, DSpace [1], Logic,
and Masplas. The largest difference made by the
factor resource name varies wildly between appli-
cations, with bookstore at 66.67% and Masplas at
1.46%. All applications show a significant number
of parameters occurring with only one resource, and
these have been discounted from all of the following
analyses.

Note the set of columns that represent the
parameter-factor differences over the threshold. In
most applications, the factor resource mattered at
least 60% of the time if the parameter value was en-
tered by the user or came from the database. How-
ever, parameter values determined by the application
were only significantly tied to the resource in only
one of the applications (bookstore).

3.4 Future Work

In the future, we will examine relationships between
all features and all factors. We will also strive to
automatically classify parameters, as that is by far
the most tedious and therefore error-prone part of the

Below Threshold At or Above Threshold
source source
S = Occurring with & S
Application Largest diff | Mean diff e overall user application | database overall user application database
Bookstore 66.67% 6.69% 13 (39.39%) 2 (10%) 4] 0] 2(40%) 18 (90%) | 11 (100%) | 4 (100%) 3 (60%)
CPM 14.72% 2.17% 13 (28.89%) 18 (56.25%) 15 (60%) | 2 (66.67%) | 1(25%)| 14 (43.75%) 10 (40%) (33 33%; 3 (75%)
115 27 106 68 16
Dspace 71.5% 4.16% | 724 (73.5%)| 155(59.39%)| 13 (16.05%) (87.97%) | (55.1%) (40.61%) (83.95)% | (12.21%) 22 (44.9%)
Logic 13.9% 3.73% | 60 (82.19%) 3 (23.07%) 2 (2B.57%) 1 (50%) 0f 10(76.92%)| 5(71.43%) | 1(50%) 4 (100%)
Masplas 1.46% 1.39% 36 (90%) 0 o] a 0 4 (100%) 3 (100%) 0! 1(100%)

User Session 1:
Professor creates quiz

Figure 4: Sample data for resource name.

Shared
Data Source

User Session 2:

Student accesses quiz

lems must be in the shared data store to be accessed,
as shown in Figure 5. The intra-session navigation

Figure 5: Example of a dependency between user
sessions.

process.

Further work will also be done with conditional
probabilities between parameter values. We believe
that if we know one parameter value, we may be able
to better predict what other parameter values in the
URL will be. We hope that by looking into this idea,
we can improve the effectiveness of the test cases.

4 Toward a User Session Depen-
dency Model

4.1 Rationale

A limitation of the current test case generation ap-
proach is that the order of user sessions within a
test suite can negatively impact the test suite’s abil-
ity to expose faults. That is, there are dependencies
among some user sessions that determine the validity
of later user sessions. For example, on an online tu-
torial Web application, professors must create prob-
lems before students can solve them, i.e., the prob-

model and the data model only consider intra-session
dependencies and flow, but the problems occur with
inter-session dependencies.

We propose creating a user session dependency
model that allows us to order the user sessions within
a test suite. Since Web application code is highly
decoupled, we cannot use static analysis to deter-
mine these dependencies. One approach is to base
the model on the user access log: each session is de-
pendent upon all previous sessions. However, this
model may overstate the dependencies, and a finer-
grained model is more appropriate.

4.2 Approach

Rather than considering user sessions, we look at
the dependence between specific requests within and
among user sessions. Our insight is that action words
like submit, create, view in the resource name may
indicate dependencies. For example, create, regis-
ter and upload imply writes to the shared data store.
View, login, and download imply reads from the
shared data store. We also believe we can use pat-
terns in how these known dependencies appear in
user sessions to suggest unknown dependencies.
The first step of the process for determining
these dependencies is to manually examine the code,

User-
Session
Dependency,
Model

Test Suite Ordered
Test Suite Arranger Test Suite

Figure 6: The test suite arranger and user session
dependency model.

Example: CreateQuiz?quizNum=x TakeQuiz?quizNum=x

EditQuiz?quizNum=x

URLs, and user sessions for a set of dependencies
to train on. Since we have had extensive experience
with our test applications and helped develop them,
this is not a difficult step. Then, we look for action
words in the resource name of known dependencies
that imply reads or writes. We have found that most
of the manually found dependencies can be revealed
using clues from these action words. Next, we mine
user sessions to find patterns in how they appear in
the URLSs of our test cases. Implementation and eval-
uation of a user session dependency model and test
suite arranger are part of our future work.

4.3 Observations and Future Work

We have found that action words reveal many of the
dependencies between URLs in our applications, and
did not reveal any false dependencies in our applica-
tions. We believe that this will also be the case for
other applications.

Although we have found some patterns for these
urls in our collected user session data, we will do
more extensive data mining for patterns in our fu-
ture work. We are also considering mining source
code to reveal patterns in how these URLSs occur in
source code. Given these patterns, we hope to reveal
unknown dependencies in our applications. This will
allow us to create a dependency model that automati-
cally arranges the final test cases within a test suite so
that dependencies are satisfied, as shown in Figure 6.

We believe that this will create better test cases. We
will evaluate the revealed dependencies for accuracy,
and we will evaluate the final generated test suites in
terms of code coverage and fault exposure.

5 Conclusion

In this paper, we present some limitations of an ap-
proach to automatically testing Web applications and
introduce some ideas for improving upon it. We
present a preliminary approach to categorizing pa-
rameters and data that shows that there is correlation
between certain factors, the type of parameter, and
the effects on the parameter value. We also draw at-
tention to the problem of an incorrectly ordered test
suite—that dependencies between URLSs can nega-
tively affect fault exposure. We present a method
of automatically estimating these dependencies and
using them to arrange the test suite. In future work,
we will fine-tune these approaches, incorporate them
into the test case generation process, and evaluate
their effectiveness.

References

[1] DSpace Federation. http://www.dspace.
org/, 2010.

(2]

Open source web applications with source code.
http://www.gotocode.com, 2003.

[3] Jessica Sant, Amie Souter, and Lloyd Green-
wald. An exploration of statistical models of au-
tomated test case generation. In International
Workshop on Dynamic Analysis, May 2005.

[4] Sara Sprenkle, Lori Pollock, and Lucy Simko.
A study of usage-based navigation models and
generated abstract test cases for web applica-

tions. In International Conference on Soft-

ware Testing, Verification and Validation (ICST).
IEEE, March 2011.

