
Introducing Students to the Digital Humanities
Samantha O’Dell

Washington and Lee University – Computer Science
18009 E Fall Dr.

Independence, MO 64055
(816) 550-8041

odells15@mail.wlu.edu

Gabrielle Tremo
Washington and Lee University – Computer Science

1019 N Green Dr.
Newport News, VA 23602

(757) 256-8088

tremog15@mail.wlu.edu
1. WHY DIGITAL HUMANITIES?
 Digital humanities is a fast-growing hybrid discipline of
quantitative scientific analysis and more subjective
disciplines. Numeric data is not the first thing that comes to
mind when one thinks about literature or art, but it greatly
deepens one’s understanding of all the humanities and
opens new avenues for analysis and learning.
Our goal was to help prepare a curriculum for a class that
will be taught at Washington and Lee University during
spring term 2014. The course, which will be taught by our
advisors this summer, Professors Sara Sprenkle and Paul
Jungman, will allow students to become acquainted with
the digital humanities and explore this fascinating
intersection between multiple disciplines.

2. BACKGROUND AND RELATED WORK
What is digital humanities? Answering this question is
difficult because there are hundreds of valid answers.
Digital humanities is not “technology for technology’s
sake” [1] but rather the intentional application of
computing’s power to other disciplines.

The class, INTR 203: You Say You Want a Revolution: An
Introduction to the Digital Humanities, will be a focused,
four-week liberal arts course introducing students to the
digital humanities. The students will be enrolled
exclusively in this class during the spring term, meaning
that class time each week is higher than for a 12- or 14-
week course. The students will have 8 hours of lecture and
6 hours of lab each week; however, they will not have to
split out-of-class time between other courses. The course is
interdisciplinary and open to all majors.

One of our main challenges was finding resources
accessible to students with little to no programming
background, particularly given the course’s fast pace. To
our knowledge, there is no prior published work on
teaching a similar course for the broad undergraduate
audience at a liberal arts college.

3. OUR APPROACH
We evaluated multiple tools for their suitability to this
course, always keeping in mind the intended audience and
the level of programming ability the students would have.

3.1 Ease of Learning
Our primary evaluation method was based on whether an
average student with limited computer science familiarity

could easily learn how to use a tool and get meaningful
data from it quickly. Several tools were discarded because
the learning curve was simply too steep for students in a
four-week course.

3.2 Visualization Tools
We prioritized tools that created visualizations.
Visualizations are excellent for helping students to
contextualize data. They also make the data received from
other tools more approachable for the students. Interpreting
data from graphs or charts is often more intuitive for
students unused to viewing data output in a terminal.

3.3 Guidelines and Module Creation
After deciding which tools were best suited to our
purposes, we then created guidelines for the students to
follow to maximize their ability to mine data. We also
created customized modules for those tools that needed it,
eliminating the need for students to spend time writing
start-up code.

4. SELECTED TOOLS
The tools we selected to use in the class excel in either
producing data or creating visualizations and some excel at
both.

4.1 Gensim
Gensim [2,3] is a Python library for language analysis of a
large corpus, or group of documents. It can handle
thousands of documents at once and initialization of a large
(15MB) corpus takes about an hour, after which analysis
can be performed. The initialization process splits an
incoming text file where different documents are separated
by line breaks into a corpus of multiple documents. In
addition, every letter is lower-cased, some punctuation is
removed, stop words are removed, and unique words are
left out by default. Punctuation that is removed includes
periods, semi-colons, exclamation points, etc. The point is
to prevent duplicate listings of words. There should be no
distinction between “said” and “said.”, for instance. Stop
words are common words that are non-essential, such as
“that,” “she,” etc. One .MM (MatrixMarket) file is saved
and one Gensim-specific .dict file is also saved, both of
which are needed for data analysis. The .MM files contains
word IDs as well as the location of each word within the
corpus and their frequencies. The most useful Gensim
attributes include word count for each unique word in a
corpus and topic analysis.

Gensim word counts reveal important information about a
corpus. Here is a selection of some of the most frequent
words in Washington and Lee University’s News Blog [4]:
{school: 4601, press: 4599, releases: 4506, &: 3874,
search: 3819, alumni: 3807} The unique “&” is high-
scoring, as well as common news topics, such as the school
itself and our alumni. Word count data is particularly useful
when applied to literary documents; authors typically strive
to reuse words as infrequently as possible and often wish to
repeat words intentionally. Having a list of exactly how
many times every word appears throughout their text can
help speed up the editing process.
Latent semantic analysis (LSA) allows the computer to
scan a corpus and return topics. These topics are formed by
groups of words that the computer identifies as part of a
particular subject. An example LSA topic from W&L’s
news blog is: {site, hall, university, bell, students, 2013,
robinson, education, artifacts, july}. This topic seems to be
extracted from several articles on the new archeological dig
site that was uncovered under Robinson hall in 2013.

4.2 NLTK: Natural Language Toolkit
The Natural Language Toolkit (NLTK) [5,6] is a tool
that helps computers process and understand natural
language. Computational languages differ from natural
languages, like English, in that they are unambiguous. Each
word in Python has a specified meaning and function.
Conversely, words in English can have one or more
meanings, and though some words may be spelled the same
they can have separate meanings (ex. “convert,” a verb;
“convert,” a noun). Natural language processors support
digital humanities by enabling computers to read and mine
text for data. They analyze text, including literature, poetry,
scientific articles, newspapers, song lyrics, scripture, etc.
NLTK stands out among other natural language tools
because of its great range of applications. NLTK can parse
through a text and either count every time a letter appears
or go as far as providing a source of “understanding” to text
and even having the computer respond!
We used NLTK in two ways: part of speech tagging (pos-
tagging) and sentiment analysis. NLTK has the ability to
tag individual words using a corpus, word usage, and
context. In pos-tagging, we used this tagging ability to go
through and tag each element with a part of speech. We
used these tags to then create MadLibs [7]. We also were
able to find libraries to support sentiment analysis. Using a
similar parse and tag method, this NLTK tool [8,9]
determined if a word or an entire text had a negative,
positive, or neutral connotation. We tested the limits and
accuracies of this tool by analyzing sections of literature,
poetry, song lyrics, and even RateMyProfessor.com
reviews. This experiment showed that, in emotive texts
(such as reviews, song lyrics, and sections of dialogue from
books), the sentiment analysis was very accurate. But in
sections of literature or poetry where descriptions
outweighed emotive phrases, the text selection was more
likely to come out neutral.

4.3 Voyant
Voyant [10] is a text analysis tool that takes user-uploaded
text and returns data and visualization from the data it takes
from the text. Voyant is the successor to TAPoRware [11]
that meshes the functions of text analysis and visualization
creation that most tools do separately. User can input text,
attach a document, or upload an entire corpus into the tool.
After the text has been loaded, Voyant shows numerical
data, such as how many unique words are in the text, as
well as makes inferences, such as how words are
connected. It then translates them into visualizations that
are easy for the human eye to understand, like charts,
graphs, and Cirrus clouds. Cirrus clouds are colorful word
clouds of all of the most used words in the passage. The
more often a word is used in the text, the bigger it is in the
cloud. The “summary” function shows frequency and
uniqueness of words. The “trends” function creates graphs
with how often and where words are used in the document.
Voyant can also collapse the search term and track
synonyms when needed. There are also many tools that
Voyant supplies to help you with more specific needs. One
of these tools is Links which creates word networks based
on words that are used in conjunction multiple times. All of
the data is fully exportable and embeddable, making it easy
to take the generated data wherever it needs to go—either
in a paper or in a WordPress site.

4.4 Shiva
SHIVA is a web-based tool that combines the power of
previous visualization tools like Google Maps and MIT's
Timeline into one uniform application. SHIVA is both
powerful and easy to use. All of its visualizations are
created using Google spreadsheets. While there are many
tools within SHIVA, we utilized three of them in our
research. SHIVA Charts creates charts and graphs. SHIVA
Maps functions like Google Maps, where markers can be
placed with descriptions. Layers can also be added to show
changes over time or even during two events. SHIVA
Timelines juxtapose pictures, events, and descriptions
together presenting them in non-text-heavy way. SHIVA
visualizations are fully customizable and interactive.
Additionally, SHIVA creations can be embedded into any
website that supports HTML iFrames. SHIVA
automatically updates visualizations when their Google
Doc source is changed.

4.5 Other Work and Dead Ends
At the beginning of the summer, we refreshed our Python
skills by creating a small program to format a given text
file. This script, called PrettyPrint.py, was initially capable
of printing out a given text with lines as close to the same
length as possible. We then added several methods to
increase formatting options. The methods added were
random, prettyPunct (creates new lines at any punctuation
mark), and setWords (creates a new line after every X
number of words). We also added command line arguments
to the program, allowing it to be run straight from the

terminal. PrettyPrint.py is a great example of how format
greatly influences the meaning of a given text.
In addition to finding and developing guidelines for useful
tools, we also found a few tools that were not suited to our
goals. One of these tools was Gephi, an open-source,
Python-compatible visualization tool. We chose it because
it could handle a lot of data and chart it effectively.
However, we discovered that while it did have a Jython
console within the program (a Python module with a Java
wrapper so that the Python is compatible with Java-based
Gephi), it did not yet have the capability to automatically
read in data and convert it to graphs. The program also had
some errors in its GUI; some of the sliding bars would
occasionally get “stuck” in a particular position and would
no longer respond to mouse clicks. Between the difficulties
in working with the program and its inability to produce the
kind of results we wanted, we moved on to other tools.
Another discarded tool, CATMA, was powerful but was
ultimately deemed too complex for students' use. CATMA,
a web application, required that steps be taken in a very
particular order and would produce no data if the user erred
during the data-input process. It was similar in many ways
to a much easier to use tool, Voyant, making it difficult to
work with as well as redundant. It was quickly abandoned.
SEASR.org, another web application, was one tool we tried
that was completely nonfunctional. After making sure that
user-error was not at fault, we abandoned this tool and
moved on to other things.
Also, getting large, interesting data sets to run Gensim
scripts on was difficult at first. We had hoped to be able to
use old issues of Washington and Lee's student newspaper,
The Ringtum-Phi, but the digital files of the paper were
poorly OCR-ed, making getting the text from the PDF files
a nightmare. Instead of creating a corpus out of Ringtum-
Phi articles, we pulled data from Washington and Lee's
website and news blog as well as from websites like ESPN
and CNN. The stripping of “junk” (mostly HTML/CSS
code) from this data was time consuming and done by
scripts written by Professor Sprenkle, but in the end we got
clean data that produced intriguing results.

5. CONCLUSION
Our research this summer resulted in an interesting set of
tools to be used in the INTR 203. Our work will aid these

students in maximizing their 4-week spring term and
allowed Professors Sprenkle and Youngman to understand
what it would be like for students to use these tools. Seeing
how valuable the combinations of these two disciplines can
be was particularly rewarding for us as double-majors in
humanity subjects. Overall, we are proud of the work we
have done this summer.

6. REFERENCES
[1] Spiro, Lisa. 2011. Getting Started in Digital

Humanities. Journal of Digital Humanities. George
Mason University.

[2] Řehůřek, R. and Sojka, P. 2010. Software framework
for topic modelling with large corpora. Proceedings of
the LREC 2010 Workshop on New Challenges for NLP
Frameworks. (May 2010), 45-50.
http://is.muni.cz/publication/884893/en.

[3] Řehůřek, R. and Sojka, P. 2010. GenSim.
http://radimrehurek.com/gensim/.

[4] Washington and Lee. 2013. News & Media.
http://news.blogs.wlu.edu/

[5] Bird, S., Loper, E., and Klein, Ewan. 2009. NLTK.
http://nltk.org/api/nltk.html.

[6] Bird, S., Loper, E., and Klein, Ewan. 2009. Natural
Language Processing with Python. O'Reilly Media Inc.

[7] GitHub. 2013. Make madlibs using NLTK (Natural
Language Tool Kit).
https://github.com/heyhuyen/madlibs

[8] Django Project. 2010. Sentiment analysis with python
NLTK text classification. http://text-
processing.com/demo/sentiment/

[9] Perkins, J. 2010. Sentiment analysis. http://text-
processing.com/docs/sentiment.html

[10] Sinclair, S. and Rockwell, G. 2013. Voyant.
http://voyant-tools.org/.

[11] McMaster University and the University of Alberta.
2007. TAPoRware Project.
http://taporware.ualberta.ca.

