Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
courses:cs211:winter2012:journals:jeanpaul:chaptter2section4 [2012/01/24 02:37] mugabejcourses:cs211:winter2012:journals:jeanpaul:chaptter2section4 [2012/01/24 23:11] (current) mugabej
Line 11: Line 11:
   * Computing the Maximum   * Computing the Maximum
  
-algorithm:max = a <sub>1</sub>  \\ +algorithm: 
 +          max = a <sub>1</sub>  \\ 
           for i = 2 to n:  \\            for i = 2 to n:  \\ 
-               if a<sub> i</sub> is greater than max then  \\  +              if a<sub> i</sub> is greater than max then  \\  
-                      set max = a<sub> i</sub>  \\  +                    set max = a<sub> i</sub>  \\  
-               Endif  \\ +              Endif  \\ 
           Endfor \\            Endfor \\ 
-           
-  * Merging Two Sorted lists 
  
- algorithm: +Merging Two Sorted lists 
 + 
 +algorithm: 
  
     To merge sorted lists A = a<sub>1</sub>,a<sub>2</sub>,a<sub>3</sub>,...,a<sub>n</sub> and B = b<sub>1</sub>,b<sub>2</sub>,b<sub>3</sub>,...,b<sub>n</sub>:     To merge sorted lists A = a<sub>1</sub>,a<sub>2</sub>,a<sub>3</sub>,...,a<sub>n</sub> and B = b<sub>1</sub>,b<sub>2</sub>,b<sub>3</sub>,...,b<sub>n</sub>:
Line 43: Line 44:
 =====O(nlogn) Time===== =====O(nlogn) Time=====
  
-It's the running time of any algorithm that splits the input into two equal-sized pieces,solves each piece recursively and then combines the two solutions in linear time. Examples: //Mergesort//finding the largest interval of time between the first and the last of the time-stamps during which no copy of a file arrived to a given server,...+It's the running time of any algorithm that splits the input into two equal-sized pieces,solves each piece recursively and then combines the two solutions in linear time. Examples: //Mergesort//finding the largest interval of time between the first and the last of the time-stamps during which no copy of a file arrived to a given server,...
  
 =====Quadratic Time O(n²)===== =====Quadratic Time O(n²)=====
Line 57: Line 58:
  Another obvious instance of the Quadratic running time is the result of using a pair of nested loop within an algorithm,each loop taking O(n) time.  Another obvious instance of the Quadratic running time is the result of using a pair of nested loop within an algorithm,each loop taking O(n) time.
  
-               +=====Cubic Time O(n³)===== 
-     +              
-    +    
 +Example: Given two sets,find whether some pair of the given sets is disjoint 
 + 
 +algorithm:\\ 
 + 
 + for each set S<sub>i</sub>  \\  
 +    for each other set S<sub>j</sub> \\  
 +       for each element //p// of S<sub>i</sub>  \\  
 +         Determine whether //p// also belongs to S<sub>j</sub> \\ 
 +       Endfor  \\ 
 +       if no element of S<sub>i</sub> belongs to S<sub>j</sub> then  \\ 
 +             Report that S<sub>i</sub> and S<sub>j</sub> are disjoint  \\ 
 +       Endif  \\ 
 +     Endfor \\ 
 +  Endfor  \\ 
 + 
 +=====O(n^k) Time=====      
 + 
 + 
 +This running time is obtained when we're searching over all subsets of size k. Example:Finding the independent sets in a graph. \\  
 + 
 +Algorithm: \\ 
 + 
 +  for each subset S of k nodes \\  
 +      check whether S constitutes an Independent set \\  
 +      if S is an Independent set then \\  
 +         Stop and declare success \\  
 +      Endif \\ 
 +  Endfor \\ 
 +  if no k-node independent set was found then  \\ 
 +     Declare failure \\ 
 +  Endif \\              
 + 
 + 
 +=====Beyond Polynomial Time===== 
 + 
 +Example: Given a graph, find an Independent set of //maximum// size. \\  
 +Algorithm: \\ 
 + 
 +  for each subset S of nodes \\  
 +     check whether S constitutes and independent set \\ 
 +     If S is a larger independent set than the largest seen so far, then \\  
 +         Record the size of S as the current maximum \\  
 +     Endif \\  
 +  Endfor \\  
 + 
 +The running time of this brute-force algorithm is O(n²2<sup>n</sup>).\\ 
 + 
 +Another example is when we have to find all ways to arrange //n// items in order,where we end up with a running time of //n//!; and the Traveling Salesman Problem.\\ 
 + 
 +=====Sublinear Time===== 
 + 
 +This running time appear when we have to query the input, the goal being to minimize the amount of querying that must be done.\\ 
 +Example: //binary search//. It's total running time is O(log//n//) as we encounter successive shrinking of the search region.\\ 
  
-                     
  
 +This section was easy to read, and the material within it were all familiar. I give it a 9/10.
courses/cs211/winter2012/journals/jeanpaul/chaptter2section4.1327372626.txt.gz · Last modified: 2012/01/24 02:37 by mugabej
CC Attribution-Noncommercial-Share Alike 4.0 International
Driven by DokuWiki Recent changes RSS feed Valid CSS Valid XHTML 1.0