Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
courses:cs211:winter2012:journals:jeanpaul:chaptersixsectioniv [2012/03/28 02:54] – created mugabejcourses:cs211:winter2012:journals:jeanpaul:chaptersixsectioniv [2012/03/28 03:13] (current) – [Designing the Algorithm] mugabej
Line 21: Line 21:
 \\ \\
 ** Better solution** ** Better solution**
 +
 +>>>>>>>>>>>>>>>>>>> OPT(i, w) = max profit subset of items 1,..., i with weight limit w\\
 +>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Case 1: OPT does not select item i:\\
 +>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> OPT selects best of { 1, 2, …, i-1 } using weight limit w\\
 +>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Case 2: OPT selects item i:\\
 +>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> new weight limit = w – w<sub>i</sub> \\
 +>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> OPT selects best of { 1, 2, …, i–1 } using new weight limit, w – w<sub>i</sub>\\
 +>>>>>>>>>>>>>>>>>>> So, OPT(i,w) is:\\
 +>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 0 if i =0\\
 +>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> OPT(i-1,w) if w<sub>i</sub> > w\\
 +>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> max{OPT(i-1,w), v<sub>i</sub> + OPT(i-1,w-w<sub>i</sub>)} otherwise\\
 +\\
 +====== Algorithm ======
 +>>>>>>>>>>>>>>>>>>> Input: N, w<sub>1M/sub>,…,w<sub>N</sub>, v<sub>1</sub>,…,v<sub>N</sub>\\
 +>>>>>>>>>>>>>>>>>>> for w = 0 to W: O(W) time\\
 +>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> M[0, w] = 0\\
 +>>>>>>>>>>>>>>>>>>> for i = 1 to N: --> For all items\\
 +>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> for w = 1 to W: --> For all possible weights( So O(NW) time\\
 +>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> if w<sub>i</sub> > w : --> item's weight is more than available\\
 +>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> M[i, w] = M[i-1, w]\\
 +>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> else:\\
 +>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> M[i, w] = max{ M[i-1, w], vi + M[i-1, w-wi] }\\
 +>>>>>>>>>>>>>>>>>>> return M[n,W]
 +
 +
 +** Algorithm Analysis**
 +\\
 +  * The algorithm takes Θ(nW) time to compute the optimal value of the problem. 
 +  * Given a table M of the optimal values of the subproblems, the optimal set S can be found in O(n) time.
 +  * Thus the Knapsack Problem can be solved in O(nW) time.
 +
 +
 +I give this section an 8/10.
 +
 +
 +
 +
 +
courses/cs211/winter2012/journals/jeanpaul/chaptersixsectioniv.1332903258.txt.gz · Last modified: 2012/03/28 02:54 by mugabej
CC Attribution-Noncommercial-Share Alike 4.0 International
Driven by DokuWiki Recent changes RSS feed Valid CSS Valid XHTML 1.0