Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
courses:cs211:winter2012:journals:jeanpaul:chapter_fivesection_v [2012/03/13 02:18] – [Designing the Algorithm] mugabejcourses:cs211:winter2012:journals:jeanpaul:chapter_fivesection_v [2012/03/13 02:22] (current) – [Designing the Algorithm] mugabej
Line 9: Line 9:
 \\ \\
 The basic idea is to break up the product into partial sums.\\ The basic idea is to break up the product into partial sums.\\
-The recurrence relation of the algorithm: T(n) ≤ 4T(n/2) + cn\\+The recurrence relation of the algorithm after some analysis: T(n) ≤ 3T(n/2) + cn\\
 ** Algorithm** \\ ** Algorithm** \\
 \\ \\
Line 17: Line 17:
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>       y = y<sub>1</sub>*2^(n/2) + y<sub>0</sub>\\ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>       y = y<sub>1</sub>*2^(n/2) + y<sub>0</sub>\\
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Compute x<sub>1</sub> + x<sub>0</sub> and y<sub>1</sub> + y<sub>0</sub>\\ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Compute x<sub>1</sub> + x<sub>0</sub> and y<sub>1</sub> + y<sub>0</sub>\\
->>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> p = Recursive-Multiply(x<sub>1</sub> + x<sub>0</sub>,y<sub>1</sub> +\\ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> y<sub>0</sub>)\\ +>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> p = Recursive-Multiply(x<sub>1</sub> + x<sub>0</sub>,y<sub>1</sub> y<sub>0</sub>)\\ 
->>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> x<sub>1</sub> y<sub>1</sub> = Recursive-Multiply(x<sub>1</sub>y<sub>1</sub>)\\ +>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> x<sub>1</sub> y<sub>1</sub> = Recursive-Multiply(x<sub>1</sub>,y<sub>1</sub>)\\ 
->>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> x<sub>0</sub>y<sub>0</sub> = Recursive-Multiply(x<sub>0</sub>y<sub>0</sub>\\+>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> x<sub>0</sub>y<sub>0</sub> = Recursive-Multiply(x<sub>0</sub>,y<sub>0</sub>)\\
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Return x<sub>1</sub>y<sub>1</sub>.(2^n) + (p - x<sub>1</sub>y<sub>1</sub> - \\ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Return x<sub>1</sub>y<sub>1</sub>.(2^n) + (p - x<sub>1</sub>y<sub>1</sub> - \\
->>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> x<sub>0</sub>y<sub>0</sub>).(2^n/2) + x<sub>0</sub> y<sub>0</sub>+>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> x<sub>0</sub>y<sub>0</sub>).(2^n/2) + x<sub>0</sub> y<sub>0</sub>\\ 
 +\\ 
 + 
 +Upon analyzing this algorithm, we find out that the overall running time is O(n^(log(base 3)3)= O(n^1.59).\\ 
 +\\ 
 +I give this section 8/10
courses/cs211/winter2012/journals/jeanpaul/chapter_fivesection_v.1331605098.txt.gz · Last modified: 2012/03/13 02:18 by mugabej
CC Attribution-Noncommercial-Share Alike 4.0 International
Driven by DokuWiki Recent changes RSS feed Valid CSS Valid XHTML 1.0